happy PI-day

3,1415926535897932384626433832795028841971
693993751058209749445923078164062862089986
280348253421170679821480865132823066470938
446095505822317253594081284811174502841027
019385211055596446229489549303819644288109
756659334461284756482337867831652712019091
456485669234603486104543266482133936072602
491412737245870066063155881748815209209628
292540917153643678925903600113305305488204
665213841469519415116094330572703657595919
530921861173819326117931051185480744623799
627495673518857527248912279381830119491298
336733624406566430860213949463952247371907
021798609437027705392171762931767523846748
184676694051320005681271452635608277857713
427577896091736371787214684409012249534301
465495853710507922796892589235420199561121
290219608640344181598136297747713099605187
072113499999983729780499510597317328160963
185950244594553469083026425223082533446850
352619311881710100031378387528865875332083
814206171776691473035982534904287554687311
595628638823537875937519577818577805321712
26806613001927876611195909216420198...

these first 1000 digits where calculated using this little Haskell snippet:

module Pi where

main :: IO ()
main =
  print . ("3," ++) . concatMap show . tail . take 1000 $ piG3

piG3 :: [Integer]
piG3 = g(1,180,60,2)
  where
    g(q,r,t,i) = 
       let (u,y)=( 3*(3*i+1)*(3*i+2)
                 , div(q*(27*i-12)+5*r)(5*t))
       in y : g(10*q*i*(2*i-1),10*u*(q*(5*i-2)+r-y*t),t*u,i+1)

which is directly taken from Unbounded Spigot Algorithms for the Digits of Pi by Jeremy Gibbons